
Systems and Internet Infrastructure Security Laboratory (SIIS) Page

HECURA: Exploiting Asymmetry in
Performance and Security Requirements

for I/O in High-end Computing

Patrick McDaniel and Anand Sivasubramaniam
HECIWG FSIO 2007 Workshop
Arlington, VA -- August 6th, 2007

1

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

E.g.: High-Performance Grid
• The first 5 minutes of processing atmospheric data

received from remote instruments represents an order
of magnitude reduction in data volume

‣ Terabytes of data

‣ Short lifetimes

‣ Integrity is paramount

‣ Experimenters trusted

Q: How do you tune the data collection and application to
process this much data efficiently and securely?

2

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Storage Challenges
• Storage in high-end computing environments faces:
‣ Each environment has unique security requirements

‣ Each data type may warrant different mechanisms

‣ Each application has different performance/security tolerances

‣ Each storage architecture has different price/performance

• Thus, a high-end deployment represents a complex and
constantly evolving performance and security tradeoff.

• Reality: current storage systems fail to assess and
implement complex a storage calculus
‣ Security and performance are not orthogonal concerns

• Problem: security necessarily introduced on critical I/O path

3

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

DataVault
• DataVault: a runtime configurable storage system

• Optimization: find protocol behaviors and enhancements
that meet security and performance profile: policy
‣ lazy encryption, deferred authentication, deferred access control

• Target: Cluster Systems and SANs
4

DataVault
Policy

D
a

s
h

b
o

a
rd

DataVault

Enforcement

SAN

DataVault

Enforcement

Client

DataVault

Enforcement

Client

DataVault

Enforcement

Client

ISCSI

Security
Requirements

Performance
Requirements

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Research Threads
• Policy Architectures/enforcement: meeting security

requirements and solutions for next generation storage

‣ Architecture/hardware enhancements

‣ Security policies, specifications

‣ Cryptographic constructions

• Performance: evaluating performance optimizations in
storage systems

‣ Architecture enhancements

‣ Protocol Improvements

‣ Cryptographic constructions

5

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Security Policy Architectures
• New storage architectures can be used to implement

security policy enforcing services at the disk layer

• Hybrid hard drives combine spinning disk platters with
non-volatile memory banks within drive enclosure

• Vision: use NVRAM as a repository for security metadata
along with on-disk processing capabilities to allow for
storage-level policy enforcement

6
drive enclosure

non-volatile memory

disk

platters

network

interface

logic
disk processor

firmware

network link

(e.g., for

iSCSI)

bus

I/O

SATA/

SCSI/

ATA

interface

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Security Policy Architectures
• Applications
‣ authenticated encryption

‣ capability systems

‣ information flow

• Integrity sets trade off
NVRAM storage for disk
performance
‣ performance is helped by spatial locality of information on disks
‣ Updates become more efficient as file sizes get larger (e.g., small

portion of 2 GB file changes, only that portion needs
recalculation rather than the entire file)

• Preliminary publication: Kevin Butler, Stephen McLaughlin, and Patrick McDaniel. Non-
Volatile Memory and Disks: Avenues for Policy Architectures. First Computer Security
Architecture Workshop (CSAW 2007), November 2007.

7

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 0 50 100 150 200 250 300

M
ill

is
ec

o
n
d
s

Integrity Set Size

Average Seek Times

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Optimizing Security
• iSCSI relies on IPsec to provide transport security, which

exacerbates packet processing overheads

• Linux 2.6, 3Ghz intel: for 8 KB pkt
AH degrades network through-
put by 58%, ESP degrades by 74%

• Bottleneck: crypto, then TCP
‣ IPsec unaware of caching behavior

• Solution: lazy mechanisms
‣ lazy decryption: store encrypted data on server, only clients

decrypt (move conf. to iSCSI layer, use IKE for key mgmt.)

‣ lazy authentication: delay authentication and perform operations
at client (N.B.: in both cases, headers are immediately processed)

8

(a) (b)

Reserved

Sequence Number

Authentication Data

Security Parameter Index (SPI)

Next Header Payload Length

Authentication Data

Padding Length Next Header

Padding

Payload Data

Sequence Number

Security Parameter Index (SPI)

Figure 1: (a) IPSec AH Format, (b) IPSec ESP For-
mat

It contains information like IP addresses, security protocol
used, cryptographic algorithm, keys, etc. IKE also provides
the benefits of dynamic SA establishment and dynamic re-
keying.

2.1 IPSec performance
Ensuring high performance of the IPSec protocol is crucial

to obtaining good throughput from the IPSec-based iSCSI
stack. With the increase in available network throughput,
thanks to the deployment of multi-gigabit Ethernet, the fo-
cus has shifted from the bandwidth offered by the phys-
ical medium to the network stack (CPU processing over-
heads) on either side of the link. Authors in [8] identify the
time spent in TCP/IP processing and interrupt overheads
as the two major bottlenecks in obtaining high iSCSI per-
formance. With the inclusion of IPSec processing to the
network flow, there is an additional slowdown to the over-
all throughput. Further, processes of encryption/decryption
are highly CPU-intensive and affect other applications run-
ning on the system. One of the major factors hampering the
performance of IPSec is the very fact that it is implemented
at the IP layer (lower layer of the stack). Thus, application-
level information and requirements cannot be exploited by
the IPSec layer.

Let’s take a closer look at the transmission of a single
IP packet through the IPSec layer on the sender side. The
following description is specific to the native IPSec imple-
mentation in Linux kernel 2.6. Though the exact processing
times and overheads may vary slightly among different im-
plementations of IPSec, all of them follow a similar set of
packet processing rules. IPSec processes a packet based on
IPSec Security Policy (SP) and IPSec Security Association
(SA). SP indicates if a packet should be processed as an
IPSec packet or dropped. The chosen packets are processed
by the IPSec stack with some parameters included by SA.
IPSec Security Policy is checked next to determine if the
packet is required to be processed by IPSec. Then, for ev-
ery IPSec packet, the SA database is queried to obtain the
destination chain of output functions. The output functions
perform cryptographic manipulations on the packet based
on the type of the protocol used, AH or ESP. Note that
there can be more than a single output function per packet
if multiple security protocols are configured for a particular
route. Finally, the IPSec packet is passed to the destination
chain.

We conducted a small set of experiments to study the per-
formance (throughput) of IPSec AH and ESP for the ttcp
program for a single client accessing a server. The sender
processes continuously transmit data of a fixed size to the
receiver which is listening on a TCP socket. The average

0.5 8 64
0

20

40

60

80

100

120

 Packet Size in KB

N
e

tw
o

rk
 t

h
ro

u
g

h
p

u
t

in
 M

B
/s

No IPSec

IPSec AH ! HMAC md5

IPSec AH ! HMAC SHA1

IPSec ESP ! DES + HMAC md5

IPSec ESP ! DES + HMAC SHA!1

IPSec ESP ! 3DES + HMAC md5

IPSec ESP ! 3DES + HMAC SHA!1

IPSec ESP ! BlowFish192 + HMAC md5

IPSec ESP ! BlowFish192 + HMAC SHA!1

IPSec ESP ! AES192 + HMAC md5

IPSec ESP ! AES192 + HMAC SHA!1

Figure 2: Maximum Throughput of IPSec for differ-
ent packet sizes

throughput and latency for each packet size was computed.
This experiment was repeated for a setup without IPSec
(No-IPSec), IPSec with AH (IPSec-AH) and IPSec with
ESP (IPSec-ESP). Measurements with IPSec AH and IPSec
ESP were repeated for different algorithms supported in the
Linux kernel 2.6 IPSec implementation. The test machines,
each a 2-processor Intel(R) Xeon(TM) 3.06GHz (with hyper-
threading turned on) running a 2.6.13 Fedora 4 kernel were
directly connected via a Gigabit Ethernet Switch. The net-
work interface cards on these machines were Intel 82546EB
Gigabit Ethernet adapters. Figure 2 shows the maximum
network throughput obtained by running ttcp on top of
IPv4, IPSec (AH and ESP). Different algorithms were cho-
sen for the two IPSec protocols. The maximum throughput
attainable was determined by increasing the number of con-
current threads in the program till the host CPU utilization
reaches 100% or network becomes saturated. For IPv4, net-
work bandwidth was fully utilized for ≥ 8KB packet sizes.
For a packet size of 512 bytes, the maximum throughput
obtained was " 75 MB/s. For IPSec AH, the maximum
throughput values obtained for packet sizes of 512 bytes, 8
KB and 64 KB was 22, 47, 62 MB/s respectively. Compared
to IPv4, that amounts to a throughput reduction of 70%,
58% and 45% respectively. For IPSec ESP, the throughput
reductions were more drastic with values of 77%, 74% and
71%. The point to point throughput suffers as well when
multiple clients are active thus resulting in poor scalability
in a shared environment. The primary reason for this degra-
dation is the centralized bottleneck caused by the IPSec pro-
cessing of all the client data at the server. This type of
performance degradation of IPSec when running iSCSI can
have a detrimental affect on the overall throughput of the
I/O applications. In the critical path of IPSec processing,
there are a pair of crypto processes (encryption/decryption
and/or HMAC) that run on two machines. The next few
sections describe how these overheads can be ameliorated
while still preserving the security guarantees.

3. PROPOSED SOLUTIONS
Consider a typical scenario in an iSCSI environment, that

comprises of a set of iSCSI clients called the initiators and
an iSCSI target that is attached to the storage disks. These
disks are exported at the block-level to the clients so that
they can store huge quantities of data and retrieve them

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance Tradeoffs

• smaller block sizes dominated by network processing,
larger block sizes dominated by crypto processing

• lazy approaches outperform IPsec with a performance
increase of 30-40% over ESP for large block sizes,
depending on workloads (rawio, BTIO, dbench)

• Preliminary publication: S. Chaitanya, K. Butler, A. Sivasubramaniam, P. McDaniel, and M.
Vilayannur. Design, implementation and evaluation of security in iSCSI-based network
storage systems. 2nd International Workshop on Storage Security and Survivability, 2006.

9

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Summary
• Addressing security and performance of HEC:

‣ Exploiting behavior of protocols can allow crypto optimizations

‣ Lazy security: Scalability leveraging endpoints to offset costs

‣ New cryptographic constructions: ABE, IBE, new modes

‣ Policy specification: how to express security requirements

• Future: detailed simulation and experimentation will
provide better understanding of tradeoffs and
challenges, and lead to generalizations ...

‣ Disksim, further experiment NVRAM extensions

‣ Direct measurement (iSCSI, others..), applications ...

‣ DataVault: new optimizations, interfaces, schedulers

10

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Other Project Details
• Faculty Funded

‣ Patrick McDaniel

‣ Anand Sivasubramaniam

• Students Funded

‣ Kevin Butler, PSU

‣ Shiva Chaitanya, PSU

• Collaborations

‣ Trent Jaeger, PSU

‣ Bhuvan Urgaonkar, PSU

• Issuses: none
11

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Publications
• Other Related Publications:
‣ William Enck, Patrick McDaniel, Shubho Sen, Panagiotis Sebos, Sylke Spoerel,

Albert Greenberg, Sanjay Rao, and William Aiello. Configuration Management
at Massive Scale: System Design and Experience. Proceedings of the USENIX
Annual Technical Conference, June 2007. Santa Clara, CA.

‣ Boniface Hicks, Kiyan Ahmadizadeh, and Patrick McDaniel. Understanding
Practical Application Development in Security-Typed Languages. 22st Annual
Computer Security Applications Conference (ACSAC), pages 153--164,
December 2006. Miami, Fl. (best student paper).

‣ Boniface Hicks, Dave King, and Patrick McDaniel. Jifclipse: Development Tools
for Security-Typed Applications. Proceedings of the 2nd ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security (PLAS '07),
June 2007. San Diego, CA.

‣ Boniface Hicks, Sandra Rueda, Trent Jaeger, and Patrick McDaniel. Integration
of SELinux and Security-typed Languages. Proceedings of the 2007 Security-
Enhanced Linux Workshop, March 2007. Baltimore, MD.

12

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Contact Info

Contact: mcdaniel@cse.psu.edu

http://siis.cse.psu.edu/

http://www.cse.psu.edu/~emcc/

13

